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Abstract

The neutron flux anisotropy of high energy anisotropic
deuterium plasmas is discussed for elliptic and monoener-

getic velocity distributions of the deuterons.

Because the anisotropy coefficient of the differential
cross section is not very well known at low bombarding
energies, computations have been performed for two dif-
ferent laws corresponding to the results of BOOTH et al.
/1/ and of THEUS et al./2/.




1. Introduction

The d-d reaction is quite strongly anisotropic. This fact
offers the unique possibility of measuring directly the
anisotropy of a sufficiently energetic deuterium plasma.

It is just necessary to place scintillation counters side-
on and end-on and thus to measure the corresponding neutron
fluxes. Their ratio, if measured absolutely, may then be
interpreted in terms of the anisotropy of the plasma. Ab-
solute measurements may be difficult. But even relative
measurements allow interesting conclusions if the ratio
changes in time, i.e. it indicates increasing or decreasing
anisotropy.

This method was proposed in an earlier paper /3/, and its
experimental application has been discussed in references

/4,5/.

A problem connected with this is that the differential cross
sections are not very well known, especially at the low

energies which are of main interest in plasma physics.

In our earlier computations we used the differential

cross sections as given by BOOTH et al./l/, but we were
well aware that this is perhaps not the last word. In

the meantime J.NEUHAUSER has drawn our attention to the

more recent measurements of THEUS /2/. His results do not
really contradict the results of BOOTH et al./l/ if one
takes into account the relatively large errors at low ener-
gies, but THEUS'’s results suggest another behaviour of

the cross section as the energy approaches zero than BOOTH's
results. So the situation is not really clear.




Figure 1 shows both the results of BOOTH et al. and of
THEUS for the neutron branch of the d-d reaction. BOOTH

et al. give the differential cross section in the following

form
2
G (g,0) = A(9) l: 1 + B(g)cos 6] (1)
with B(g) = 0.31 + 0.0058 Ed (2)
where Ed = % g2 is the bombarding energy in keV,
-’ . 0 3
g is the relative velocity,
0 is the angle between ”3 and the direction of
neutron emission in the center-of-mass system,
and m is the deuteron mass.

In order to have a comfortable analytic representation of
THEUS's results in the low energy region, we have chosen

the arctg of figure 1. It should be noted, however, that
this is a very bad fit for higher energies (Ed'>-300 keV), but
these are not important for our purposes. So we use

B(g) = 0.83 arctg (0.02 E E, in keV (3)

d)' d

Thus far we have discussed the neutron branch of the d-d
reaction only. The situation is very similar for the proton
branch. Both BOOTH et al. and THEUS also give its anisotropy.
In the present paper we discuss only the neutron branch for
two reasons: First, the neutron branch is more anisotropic
and is thus better adapted to our plasma diagnostic purposes,
i.e. the measurements based on the neutrons are more sen-
sitive with respect to anisotropy. Second, the neutrons are
easier to observe because they may freely leave the discharge
region without being disturbed by the magnetic fields. This

does not exclude similar measurements on the protons generated




by fusion reactions. The general results of this report may
be used for protons as well. The numerical results, however
apply to the neutron branch only.

2. The flux anisotropy

Consider a deuterium plasma with a given velocity distri-
bution of the deuterons. We fix our attention on a certain
pair of particles with

J

center-of-mass-velocity

Q) n

and relative velocity

It is easy to show that the "differential reaction rate",
i.e. the number of neutrons emitted per unit time and per

unit plasma volume into the unit solid angle, is given by

o

in the center-of-mass-system

dr

das

2 _ g 3. .3
) £(s -3 - g S(g,0) a’s d'g (4)
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f is the distribution of velocity in the plasma. This reaction
rate should, in principle, be transformed into the laboratory
system. If the plasma energy is much smaller than the reaction
energy - in other words, if the center-of-mass velocities are
much smaller than the velocities of the neutrons emitted -

we can neglect the difference of the fluxes in the center-of-
mass and laboratory systems. For this reason we use eq. (2) to
compute the fluxes in the laboratory system also. We consider
first an elliptic distribution of the deuterons, i.e. we
assume

f= b B2 2 2]

= ﬂ.3/2 exp [— B‘Lu . B"u (5)
= I - _m

Py = 2KT; Py = 2kT,, (6)

Omitting all details of algebra we state that in this case we

get
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. g3 A(qg) 1+ -B—Z(S)—[(l - Fz)sinzm + 2F2 cosza]
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A is the angle between the direction of observation and
the parallel axis.

We are not interested in the absolute value of dr/d$ .

We consider just the ratio

Ve = (mid:%g)*= 20° (8)

ETe = 0°
), = o

i.e. the ratio of fluxes side-on and end-on.
(9)

12
({{' eXP[: - :‘L‘ﬁL 92(1— ?2) 2§2-[g A(qg) [1+—-—B (9) (1 ] dg d?
f

5
(Tl F 5 - B 7w [ vy Tor s

C

V—-

Introducing mean values with respect to both g and’f ., which
are defined as follows:

g
(el 20213 -35%%] Pace) paf) ag af

( exp |- -%-BJ gz(l—‘fz) -ﬁ%_ngz_'[ 9°A(g) dg df (1o)

Ly

V may be written as

o +§[<’<B(g>>>~ st § 2y ]
X Bla) fz)) .

Let us now discuss more special cases. First we consider a
two-dimensional Maxwellian for which /M/=%> oo,



Either by taking this limit of equation (9) or by introducing

a two-dimensional Maxwellian directly into eq. (4) we obtain

fo'<)
/0 exp (- %—BJ_ %) g% A(9) B(9) dg
V=1+ %“ == 1 2 2 (12)
j exp(- 5B, g7) g” A(g) dg
or -

2 (13)

where AQiB(g) >>2 is the mean value appearing in eq. (12).

Similarly we obtain for a one-dimensional Maxwellian (B;=o°)
>3

;C exp (- %—Bu %) g A(9) B(g) dg

1
e d By (14)
v rexp(— %’ﬁn g?) g A(g) dg
or ¢
1
\% (15)
1+ <P(g)7l

Another example is a two-dimensional monoenergetic distri-
bution, i.e.

_1 f2 2
e-2 0 -d) d ) (16)
which yields 2u 2
g A(9) [ 1+ B(g) %—u]
&R _n® dg
8% he 2 2 _ 1 2]
18 (qb -29 ’>l§

so that
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v=1+ %-(;B(g);> mono2 (18)

3. Approximations

The results for two-dimensional Maxwellians, one-dimensional
Maxwellians and two-dimensional monoenergetic distributions,
i.e. eq.(12), (14), (17) may be approximated for both branches
of the d-d reaction in the following manner.

For the Maxwellian cases it is known that most reactions
occurring correspond to a relative energy Eqs which is
approximately given by

Eg &~ 13 (kT) 2/3 (19)

(Ed and kT in keV, see reference /3/ for details), and thus
the mean values <\B(g)>’2 and <;B(g) >‘l may both be appro-
ximately obtained just by choosing g corresponding to eq.
(19) :

{B(g) ), & Blg) for 13 (xr,)%3 (20

N-.cl;
1]

2 2/3

4B(g)7l ~ Blg) for D¢ =13 (xr,) (21)
For the two-dimensional monoenergetic distribution the main
contribution to the averaged value of B(g) comes from g-values
close to the upper limit of the integral in eq. (17), first
because the cross section A(g) increases with g, and second
because of the large weight given to this g - values by the

root in the denominator. So we may approximately write

(B 1onos A Blo=2u) (22)




As mentioned already, these approximations may be used for both
the neutrons and the protons produced. In the next section we
give numerical results for the neutron branch only, and com-

parison shows that approximations (20) to (22) are rather good.

4., Numerical results

Because the behaviour of the anisotropy is not really clear
we have computed the flux ratios V defined in section 2 for
both the linear dependence for B(g) of BOOTH (eqg. (2)) and
for the arctg dependence (eq.(3)), the latter of which fits
the results of THEUS at low energies.

Figures 2 and 3 give V for elliptic distributions with perpen-

dicular and parallel temperatures from O to 10 keV.

Figures 4 gives the corresponding results for two-dimensional
monoenergetic distributions, also in the O to 10 keV range.
In the case

B(g) = 0.31 + 0.0058 Ey

V is not really defined for zero temperature. For instance,
\Y%
v

1.155 for a two-dimensional Maxwellian with kT ,= 0 (see eq.l1l3)
0.76 " " one N i & kTH:§O (see eq.15),

Actually any walue between 1.155 and 0.76 can be obtained by
fixing the ratio T, /T, and then going to the limit of zero

temperatures.

Thanks are due to J.NEUHAUSER, who drew our attention to the
measurements of THEUS.

Note added in proof.

After the completion of this report the problem of the d-d
reaction and its anisotropy at zero energy has again been dis-

cussed theoretically by Boersma /6/. His conclusion is that




an anisotropy should exist even in the limit of zero energy as
pointed out by Beiduk et al./7,8/ in 1950 already. The theoreti-
cal results confirm the experimental results of Eliot et al./9/
and of Booth et al./2/, while the corresponding curves of Theus
et al./1/ seem to need modification.
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